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TOLERANCE OF MACH 2.50 AXISYMMETRIC MiXED-COMPRESSiON
INLETS TO UPSTREAM FLOW VARIATIONS
by David A. Choby

Lewis Research Center

SUMMARY

An investigation of the tolerances of two Mach 2. 50 axisymmetric mixed-
compression inlets to upstream flow variations has been conducted in the Lewis 10- by
10-Foot Supersonic Wind Tunnel. These variations included reductions in free-stream
Mach number and a uniform Mach number gradient of 0. 10 across the cowl lip plane,

Tolerances to angles of attack as a function of decreasing free-stream Mach number
were obtained for the two inlets, each with two different bleed configurations. Data
showed a local region of overcompression was formed on the leeward side of the inlet at
maximum angle of attack before inlet unstart. This region of overcompression caused
the flow to reach subsonic conditions locally ahead of the geometric throat. The flow on
the windward side of the inlet appeared well behaved. By increasing or relocating the
inlet bleed further upstream in the region of overcompression, larger angles of attack
before unstart were obtained. A region of overcompression forward of the throat was
also observed at the minimum free-stream Mach number at which the inlet would operate
just prior to inlet unstart with the centerbody at the design position. In this case, the
region of overcompression circumferentially encompassed the entire inlet. When a
bleed change was made such that the angle-of-attack tolerance of the inlet was increased,
the tolerance to Mach number reduction was also increased. A uniform Mach number
gradient of 0. 10 across the inlet cowl lip plane did not affect the inlet's total-pressure
recovery, mass flow ratio, or diffuser exit distortion.

INTRODUCTION

In order to achieve high inlet performance and low inlet drag at cruise Mach num- .
bers greater than 2.0, it becomes essential that some portion of the supersonic area
contraction occur internally. While an inlet which utilizes a mixture of external and



internal contraction can be designed to yield the desired performance and drag character-
istics, this type of inlet has an undesirable transient characteristic known as unstart
which occurs when the terminal shock is forced forward of the aerodynamic throat. The
unstart causes a sharp reduction in inlet total-pressure recovery and mass flow ratio.
Reference 1 shows that the unstart transient can be violent enough to cause compressor
stall. Studies (ref. 2) have been completed using a throat bypass which allows the inlet
to absorb large internal transients without unstarting.

However, not all unstarts are caused by internal disturbances. External upstream
disturbances causing changes in free-stream Mach number and angle of attack can also
induce inlet unstarts. In addition the inlet flow field may be distorted by the airframe
flow field. To date, very little information has been published specifically concerned
with the tolerances of axisymmetric mixed-compression inlets to angles of attack or to
Mach number reductions. Since the flight environment of a supersonic cruise aircraft
includes gusts and thermal gradients which eventually show up as angle of attack and/or
Mach number changes, a certain tolerance to these disturbances must be present in the
inlet.

In order to better understand just what affect these disturbances have on the inlet and
what can be done to make the inlet more tolerant to these disturbances, the present in-
vestigation was undertaken. Two high-performance Mach 2. 50 axisymmetric mixed-
compression inlets with different amounts of internal contraction were tested in the
Lewis 10- by 10-Foot Supersonic Wind Tunnel. The testing was done at a nominal Mach
number of 2.50. A flat plate was used to produce a continuous uniform Mach number re-
duction. Also a contoured plate was used to create a distorted flow field at the inlet cowl
lip plane. Two different amounts and locations of bleed were tested in each inlet.

SYMBOLS

A area, m? (ftz)
M Mach number

m2/m0 ratio of diffuser exit to free-stream capture mass flow

P total pressure, N/m2 (lb/ftz)

AP fluctuating component of total pressure, N/m2 (1b/ft2)
p' static pressure, N/m2 (1b/ft2)

Ra cowl lip radius, 23.66 cm (9.315 in.)

r local radius, cm (in.)

X distance measured from spike tip, em (in.)




thickness of plate contour (see fig. 10), cm (in.)

yA distance measured from leading edge of contoured plate, cm (in.)
a angle of attack, deg
6; cowl-lip-position parameter, tan'l r_.l_-l
|[X/R¢]
1% local flow angle, deg
Subscripts:
bottom
C cowl lip station
cp contoured plate

fp flat plate
I inlet

l local
max maximum
min minimum

rms root mean square

T top

0 free stream

2 compressor face
Superscript:

- average

APPARATUS AND PROCEDURE

A complete discussion of the aerodynamic designs of both inlets tested in this in-
vestigation is presented in references 3 to 5. Both inlets were axisymmetric mixed-
compression types designed to operate at Mach 2.50. Isometric views of both inlets are
shown in figure 1. Throughout this report the two inlets are referred to by their per-
centage of external and internal area contraction. Thus the 40-60 reflecting shock inlet
had 60-percent internal area contraction and is called the 40-60 inlet. The 60-40 dis-
tributed compression inlet had 40-percent internal area contraction and is called the
60-40 inlet.



The 40-60 Inlet

Figure 2 presents a detailed cross section of the model. A translating centerbody
was used for starting the inlet. The 40-percent external compression was accomplished
with a 12.5° half-angle conical centerbody. The 60-percent internal compression was
obtained from the oblique shock generated by the 0° cowl lip and the two reflected
oblique shocks plus isentropic compression between these reflected shocks.

The internal area variation from the cowl lip to the compressor face is shown in
figure 3. The geometric throat was located at an X/RC of 3.475, where the theoretical
average supersonic Mach number was 1.24. At the geometric throat, the centerbody
turned sharply from an angle of about 0° to -5. 70, leading to a 1° equivalent conical ex-
pansion throat region 4 hydraulic radii in length. The remainder of the subsonic diffuser
was designed as an g° equivalent conical expansion. The required subsonic diffuser
length using this criterion was 3.5 cowl lip radii. However, additional length was re-
quired due to overboard bypass exit requirements. The resulting length from cone tip to
compressor face was 7. 86 cowl lip radii. The aft portion of the subsonic diffuser con-
tained three hollow centerbody support struts which divided the diffuser duct into three
compartments back to the compressor face. Two of these struts were used to duct cen-
terbody bleed flow overboard.

Vortex generators were installed on the centerbody in the subsonic diffuser to pre-
vent separation of flow from the centerbody in the bypass region when large bypass flows
were discharged. Performance bleed, which consisted of porous regions on the center-
body and cowl, was located both in the supersonic diffuser and in the throat region of the
inlet. The actual bleed patterns which were tested are shown in figure 4. Each of the
bleed configurations removed about 5.5 percent of the total mass flow. The ejector by-

pass which was incorporated to provide airflow for engine cooling was sealed for this in-
vestigation.

The 60-40 Inlet

A detailed cross section of this model is presented in figure 5. A translating center-
body again was used for starting the inlet. The 60-percent external compression was ac-
complished with a biconical centerbody. The first and second cone half angles were 10°

.and 18. 50, respectively. The 40-percent internal compression was obtained from the

oblique shock generated by the 5° cowl lip. Where the cowl oblique shock intersected the

_ centerbody, the surface turned abruptly such that the shock would be theoretically can-

celed at that point. The cowl surface angle decreased from 5° at the lip to about 0° in
the throat region. This cowl turning distributed the remaining internal compression



isentropically over a region of the centerbody which began at the cowl shock intersection
point and extended a distance equal to 0.40 cowl lip radius.

The flow area variation from the cowl lip to the compressor face is shown in fig-
ure 6. The geometric throat was located at an X/Rc of 3. 28, where the theoretical av-
erage supersonic Mach number was 1.30. The throat region in this inlet also had a 1°
equivalent conical expansion for a length of 4 hydraulic radii. The subsonic diffuser used
in this model was the same one that was used with the 40-60 inlet.

Performance bleed, consisting of regions of normal holes, was located on the cowl
in the throat region and also upstream of the throat. On the centerbody, bleed was lo-
cated in two regions upstream of the throat. The exact bleed patterns that were tested
are shown in figure 7. Vortex generators were also installed in this model on the center-
body.

Mode! Instrumentation

The steady -state compressor face instrumentation, shown in figure 8, was used to
determine total -pressure recovery and steady-state distortion for both inlets. This in-
strumentation consisted of six 10-tube total-pressure rakes and six static-pressure taps
each on the cowl and centerbody. The 10-tube rakes consisted of six equal-area-
weighted tubes with additional tubes added on each side of the extreme equal-area-
weighted tubes in positions corresponding to an 18-tube area-weighted rake, The com-
pressor face dynamic instrumentation, shown in figure 9, was used to measure the fluc-
tuating component of total pressure in both inlets, Subminiature absolute pressure trans-
ducers were mounted in rakes cantilevered from the centerbody as shown in figure 9.

The total-pressure transducer was mounted tangential to the tube to protect the trans-
ducer diaphragm from particle damage. The 1.905-centimeter (0. 75-in.) tube length
was necessary to obtain an accurate total pressure but was still short enough to yield a
flat response to at least 1000 hertz. The output signals of rake transducers were filtered
by first-order, low-pass filters with a 1000-hertz corner frequency and measured with
trms meters.

Static-pressure taps were located in both inlets on the centerbody and cowl. The
taps were in axial lines at circumferential locations of 0° and 180°. TableI gives the
exact location of each tap in terms of nondimensional distance from the spike tip for
each inlet.




Upstream Flow-Variation Devices

Two different devices were used to generate upstream flow variations. The first of
these, shown in figure 10, was the contoured plate. The contoured plate was used to
generate a Mach number and flow angle gradient such as that created by a typical air-
frame flow field. The second upstream flow variation device used was a flat plate. The
flat plate had about the same trapezoidal shape as the contoured plate.

Figure 11 shows the installation of a Mach 2. 50 inlet with the flat plate. With the in-
let and flat plate both at 0° angle of attack (fig. 11(a)), the local conditions at the inlet
face were not changed from the free-stream conditions. The flat plate was used to uni-
formly decrease free-stream Mach number so that inlet maximum angle of attack as a
function of decreasing free-stream Mach number could be determined (fig. 11(b)).

The installation of a Mach 2. 50 inlet with the contoured plate is shown in figure 12.
The contoured plate was designed such that, when the inlet and plate were set at 0° in-
clination, the inlet experienced a 0. 10 Mach number gradient and a 2. 320 angle-of -attack
gradient. The Mach number increased from 2.45 at the bottom of the inlet to 2. 55 at the
top of the inlet. The local flow angle that the inlet experienced varied from -1. 16° at the
bottom of the inlet to +1. 16° at the top of the inlet. The resulting average Mach number
and average angle of attack were calculated as shown in figure 12. The local flow condi-
tions at the top and bottom of the inlet were functions of the inclination of the contoured
plate and the relative positions of the inlet and contoured plate. When the contoured
plate was inclined relative to the free stream, the inlet still experienced a gradient of
about the same strength. However, the inlet then operated at a different average Mach
number and average angle of attack. In this manner it was possible to obtain the inlet's
tolerance to average angle of attack as a function of decreasing average Mach number.
Figure 13 shows the 40-60 inlet and flat plate installed in the Lewis 10- by 10-Foot
Supersonic Wind Tunnel.

RESULTS AND DISCUSSION

The results of this investigation are discussed in three sections. The first of these
discusses the performance of the various inlets and bleed configurations at design Mach
number and 0° angle of attack. The second section discusses the tolerance of the inlets

.to the uniform upstream variations in angle of attack and Mach number created by the
flat plate. The performance of the inlets operating in the nonuniform flow fields of the

_ contoured plate (i.e., with Mach number and angle-of-attack gradients) is presented
in the third section.




Performance at Design Mach Number and 0° Angle of Attack

The 40-60 inlet. - The effect of the amount and location of porous bleed on the per-
formance of the 40-60 inlet at 0° angle of attack is presented in figure 14. The amount
of overboard bypass mass flow was 4.5 percent of capture for both bleed configurations
tested. The supercritical bleed mass flow ratio was 5.5 percent for each bleed config-
uration. The amount and location of porous bleed area yielded no major differences in
steady -state or dynamic distortion levels. The downstream bleed configuration yielded
slightly higher peak pressure recovery and had more mass-flow-ratio turnover from
supercritical to minimum stable operation than did the upstream bleed configuration.

Static-pressure distributions for both bleed configurations tested are presented in
figures 15 and 16. Data are presented for minimum stable operation and for one or more
supercritical points. The theoretical pressure distribution is shown in the figures by the
dashed lines. A theoretical shock reflection point is shown as a pressure discontinuity
at a point. These occur at values of X/RC of 2,85 and 3.48 on the centerbody and 3. 25
on the cowl. The experimental data show that the actual shock reflections occur up-
stream of the theoretical for both bleed configurations tested. A schematic of the rela-
tive shift of the experimental shock structure with respect to the theoretical is shown in
figure 17. The shift in shock structure is due to the buildup of boundary layer on the
cowl and centerbody surfaces. This buildup of the boundary layer and the subsequent
shifting of the shocks tends to slightly overcontract the inlet.

The 60-40 inlet. - Figure 18 shows the effect of the amount and location of bleed on
the performance of the 60-40 inlet. The two bleed configurations tested with this inlet
are referred to as the basic and modified bleed configurations (fig. 7). The modified
bleed configuration differs from the basic only in that additional bleed was incorporated
on the cowl in the forward supersonic diffuser. This additional bleed reduced the super-
critical mass flow ratio of the modified bleed configuration by about 1.5 percent com-
pared to the basic bleed configuration. Both bleeds yielded about the same peak total -
pressure recovery, Supercritical distortions were higher for the modified bleed config-
uration. Both configurations incorporated 4. 5-percent overboard bypass flow.

Minimum stable and supercritical static-pressure distributions are shown for the
basic and modified bleed configurations in figures 19 and 20. The theoretical static-
pressure distribution is shown in the figures by the dashed lines. On the cowl, boundary-
layer separation is evident at an X/RC of 2.9 for the basic bleed configuration
(fig. 19(a)). The pressure rise associated with it appears on the centerbody at an X/Rc ,
of about 3.05 (fig. 19(b)). The added forward cowl bleed of the modified bleed configura-
tion apparently prevented the separation at supercritical conditions (fig. 20). The pres- .
sure on the centerbody is somewhat higher than theoretical between values of X/RC of
about 2. 75 to 3.00 for both configurations. The cause of the higher pressures could be




associated with partial reflection of the cowl lip oblique shock rather than with complete
cancellation as designed. The reflected shock appears on the cowl at an X/ RC of 3.05
(figs. 19(a) and 20(a)) and on the centerbody at an X/RC of 3. 23 (figs. 19(b) and (20(b)).
Figure 21 presents a schematic of the theoretical and experimentally determined flow
fields of the 60-40 inlet.

Tolerance of Inlets to Uniform Upstream Variations in
Angle of Attack and Mach Number

The 40-60 inlet. - The supercritical angle-of -attack tolerance as a function of de-
creasing free-stream Mach number is presented in figure 22 for the two bleed configura-
tions tested in the 40-60 inlet. The tailed symbols denote operating points for which in-
let performance data will be presented, while the solid symbols denote points for which
static-pressure distributions will be presented. The data of figure 22 were obtained us-
ing the flat plate upstream of the inlet as explained in the section APPARATUS AND
PROCEDURE.,

The data show that the upstream bleed configuration clearly offers a greater toler -
ance to both angle of attack and changes in free-stream Mach number. Using the down-
stream bleed as a comparison, the upstream bleed doubled the Mach number tolerance
but increased maximum positive angle of attack at design Mach number by only a third.

Inlet performance for limiting angles of attack at various Mach numbers (tailed sym-
bols of fig. 22) is presented in figures 23 and 24 for the downstream and upstream bleed
configurations. Inlet peak pressure recovery reached a maximum when free-stream
Mach number approached a minimum (0° angle of attack). For all the data of figures 23
and 24, there was little or no mass flow turnover between supercritical and peak inlet
total-pressure recovery. This indicates that, when the inlet is operating at maximum
angle of attack for a given free-stream Mach number, the ability to absorb an internal
flow disturbance is greatly decreased.

Static-pressure distributions for limiting angles of attack at various Mach numbers
(solid symbols of fig. 22) are presented in figure 25 for the downstream bleed configura-
tion. Two operating points are presented. The first is at design Mach number and max-
imum angle of attack. The second is at about 0° angle of attack and the minimum Mach
number that could be obtained with a started inlet with the centerbody at the Mach 2,50
design position. Static-pressure distributions are presented for the cowl and centerbody
surfaces at 0° and 180° circumferential locations. The value of static-pressure ratio
which corresponds to sonic conditions is a function of free-stream Mach number and is
shown on each figure. Also the location of each row of bleed holes is indicated by a tick




mark on the abscissa of the graph. The theoretical pressure distribution for the design
Mach number of 2. 50 and 0° angle of attack is also presented for comparison.

The most significant effect of going to angle of attack on inlet static-pressure dis-
tributions is seen on the leeward side of the inlet. Here static pressures reach values
corresponding to subsonic flow conditions well ahead of the geometric throat. The theo-
retical pressure distributions for design Mach number and 0° angle of attack show a sin-
gle sharp pressure rise on the cowl forward of the throat, indicating one shock reflection
point. The angle-of-attack data (fig. 25(a)) show two such points, indicating two shock
reflection points on the cowl surface. The impingement point on the centerbody of the
cowl-lip-generated oblique shock has shifted forward as shown by the data of figure 25(b),
at least on the leeward (top side at positive angle of attack) side of the inlet. It appears
that the entire shock structure on the leeward side of the inlet is compressed and shifted
upstream in the inlet, with additional shock reflections occuring upstream of the geomet-
ric throat. These additional shock reflections decelerate the flow to subsonic speeds
ahead of the geometric throat. The flow then accelerates and is again supersonic when it
reaches the inlet geometric throat.

The windward (bottom of inlet at positive angle of attack) side of the inlet shows no
overcompression, in contrast to the leeward side. Except for the cowl-lip-generated
oblique shock falling downstream of the theoretical impingement point, the data on the
windward side compare well with the theoretical. Thus from the data of figure 25 it
would appear that the maximum angle of attack is limited by the overcompression which
occurs locally on the leeward side of the inlet. Since pressure distributions were ob-
tained at only two circumferential locations (00 and 1800), there is no way of telling how
much of the inlet was encompassed by the region of overcompression.

When an inlet is operating at angle of attack, the flow on the leeward side of the inlet
sees a relatively smaller cone angle, while the flow approaching the windward side sees
a steeper cone angle. This would mean that the average cowl lip Mach number would be
higher on the leeward side than on the windward side. Based on only this, it would be
logical that the windward side of the inlet would be overcontracted, causing unstart.
However, the data show that just the opposite occurs. This contradiction can be ex-
plained by considering the flow field about the centerbody at angle of attack.

At positive angle of attack a circumferential pressure gradient exists on the forward
portion of the centerbody, with the highest pressure being on the bottom. This pressure
gradient produces a velocity component in the circumferential direction from the bottom
to the top of the centerbody. This circumferential component of velocity will, in gen-
eral, cause the flow to migrate toward the leeward side of the centerbody. The flow
which will be turned the most by the circumferential velocity component is the flow in the
boundary layer which has low axial velocity.



Data from a current test are presented in figure 26 to show the effect of angle of at-
tack on boundary-layer thickness. The data shown were obtained on the leeward side of
the 40-60 inlet at 2.7° angle of attack. The data were obtained at an axial location X/RC
of 2.73, which is well ahead of the first bleed region and ahead of the first cowl oblique
shock reflection point. As can be seen from the data, the boundary layer has almost
doubled in thickness at this point. Due to the migration of the flow field in general and
the boundary layer in particular, the top (leeward side at positive angle of attack) of the
inlet tends to overcontract. This overcontraction limits the maximum angle of attack
attainable before inlet unstart.

Figures 25(c) and (d) present additional data obtained with the downstream bleed con-
figuration in the 40-60 inlet. The data are for the inlet operating at about 0° angle of at-
tack at the minimum free-stream Mach number at which the inlet would remain started
(Mach 2.414). For this case the inlet was uniformly overcontracted, as shown by the
symmetry of the data obtained at circumferential locations of 0° and 180°. The over-
compression at both of these locations is similar to that which occurred on the leeward
side of the inlet at maximum angle of attack. It would appear that the inlet, for a given
bleed configuration, is sensitive to a given magnitude of overcompression in terms of
static-pressure ratio. Further, it does not seem to make any difference whether the
overcompression is circumferentially local (design Mach number, maximum angle of at-
tack) or encompasses the entire inlet (minimum Mach number, 0° angle of attack).

It would seem that additional angle-of-attack and Mach number tolerance could be ob-
tained by a more forward location of the porous bleed. The second bleed configuration
tested with the 40-60 inlet incorporated most of the porous bleed area in the regions of
the cowl and centerbody where the maximum overcompression occurred resulting in sub-
sonic flow. As was previously shown (fig. 22) this bleed configuration (upstream bleed)
increased both angle-of-attack and Mach number tolerance.

Static-pressure distributions are presented in figure 27 for the upstream bleed con-
figuration. Figures 27(a) and (b) are for the inlet operating at design Mach number and
maximum angle of attack. Figures 27(c) and (d) were obtained with the inlet very near to
0° angle of attack and at the minimum Mach number attainable. The data of figure 27 are
similar to those of figure 25. The shock reflections appear to have shifted upstream
slightly more. Figure 28 presents a schematic representation of the experimentally de-
termined shock structures at design Mach number in the 40-60 inlet for 0° angle of attack
and for the maximum angles of attack obtained with the two bleed configurations tested.
The shock structures shown were those formed on the leeward side of the inlet.

The 60-40 inlet. - Data were also obtained which determined the tolerance of the 60-
40 inlet to angle of attack as a function of free-stream Mach number. These data, shown
in figure 29, were obtained using the flat plate to obtain uniform variations in Mach num-
ber and angle of attack. As seen from the figure the maximum angles of attack that were
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attained by the 60-40 inlet were greater than those attained by the 40-60 inlet (fig. 22).
The maximum tolerance to a reduction in free-stream Mach number was about the same
for both inlets. Static-pressure distributions were not obtained when the 60-40 inlet was
run with the flat plate. However, static-pressure distributions were obtained when the
60-40 iniet was run with the contoured piate and are presented in a following section.

Tolerance of Inlets to Nonuniform Upstream Variations in

Angle of Attack and Mach Number

The 40-60 inlet. - The effect of a Mach number and angle-of -attack gradient on inlet
performance is shown in figure 30. These gradients were produced with the contoured
plate that was described in the section APPARATUS AND PROCEDURE. This contoured
plate caused a gradient in angle of attack of 2. 320, varying from -1, 16° at the bottom of
the inlet to +1. 16° at the top of the inlet. The accompanying Mach number gradient was
0. 10, with an average Mach number of 2.496. As can be seen in figure 30, the mass
flow pressure recovery and distortion characteristics of the inlet were not affected by the
presence of the gradient. These data were obtained with the 40-60 inlet tested with the
upstream bleed configuration. The effect of the gradient on internal static -pressure dis-
tributions is shown in figure 31. The data presented are for a supercritical operating
point with and without the gradient imposed upon the inlet. Data are presented for two
circumferential locations, 0° and 1800, for both the cowl and centerbody surfaces.

These data show the gradient did not significantly affect the pressure distributions on the
cowl or centerbody. Similar data were obtained for the 40-60 inlet with the downstream
bleed and also for the 60-40 distributed compression inlet with both bleed configurations
that were tested. In each case the results were similar to the results presented in fig-
ures 30 and 31; that is, the Mach number and angle-of-attack gradient for the two con-
figurations tested with each inlet had no effect on inlet performance.

The effect of angle-of-attack and Mach number gradients on the tolerance of the 40-
60 inlet to average angle of attack as a function of average free-stream Mach number is
shown in figure 32. The inlet's tolerance to angle of attack as a function of Mach number
for uniform flow field conditions is also shown for comparative purposes. The data were
plotted for the average Mach number and average angle of attack that the inlet experi-
ences. The results obtained with the downstream bleed are presented in figure 32(a).
The effect of the flow field gradient tends to be slight at positive average angles of attack.
The reason for this can be explained by observing the nature of the gradient. At positive
angles -of -attack the gradient tends to locally increase angle of attack and Mach number ’
on the leeward (top) side of the inlet. These two effects tend to cancel since increasing
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Mach number increases angle-of-attack tolerance. However, at negative average angles
of attack the gradient increases the absolute value of local angle of attack (a greater neg-
ative angle of attack occurs locally) and decreases Mach number on the leeward (bottom)
side of the inlet. The net result is that for a given average Mach number the tolerance
to average angle of attack is decreased. The data obtained with the upstream bleed con-
figuration (fig. 32(b)) follow the same trend with some scatter in the positive angle-of-
attack data.

Schlieren photographs of the external shock structure of the 40-60 inlet are shown in
figure 33. The symmetric shock pattern corresponding to design Mach number and 0°
angle of attack is shown in figure 33(a). Figure 33(b) shows the inlet operating at max-
imum angle of attack with the initial cone shock being unsymmetrically displaced from
the cowl lip. The minimum Mach number condition attainable at about 0° angle of attack
is shown in figure 33(c). In this case the shocks fall uniformly outside of the cowl lip be-
cause of the reduced free-stream Mach number. Figure 33(d) to (f) were obtained with
the gradient imposed upon the inlet. When the average angle of attack is 0° and the av-
erage Mach number is equal to design, the shock structure is unsymmetrical due to the
gradient. Similar effects can be seen in figures 33(e) and (f).

The 60-40 inlet. - Angle-of-attack tolerance as a function of free-stream Mach num-
ber is shown in figure 34 for the 60-40 inlet. Data are presented with the inlet operating
in the Mach number - angle-of-attack flow field gradient. Inlet performance data will be
presented for the operating conditions indicated by the tailed symbols. Static-pressure
distributions will be presented for the operating points indicated by the solid symbols.
Both the basic and modified bleed configurations of the 60-40 inlet offered greater angle-
of -attack tolerance than did the 40-60 inlet. However, the 60-40 inlet with the basic
bleed (no forward cowl bleed) offered very little tolerance to decreases in free-stream
Mach number. Since very few data were obtained with this inlet at positive angles of at-
tack with a uniform flow field, it is not possible to see the effect of the gradient at posi-
tive angles of attack. The 60-40 inlet had slightly more Mach number tolerance when op-
erating in the gradient. The decreased average negative angle-of-attack tolerance was
again observed when the inlet was operated with the gradient, especially when the basic
bleed configuration was tested.

Figures 35 and 36 present inlet performance for the inlet operating at the various
conditions shown in figure 34. The performance data were obtained with the inlet oper-
ating in the flow field gradient. As was noticed with the 40-60 inlet, all mass-flow-ratio
turnover between supercritical and minimum stable was lost when the 60-40 inlet was op-
erated at maximum average angle-of-attack conditions. Because the 60-40 inlet could
operate at higher angles of attack at design Mach number, the inlet total-pressure dis-
tortions were higher. Distortion, however, decreased when the inlet was operated at
low angles of attack near the minimum free-stream Mach number attainable. The higher
distortions at large angles of attack were primarily circumferential.
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Static-pressure distributions for the 60-40 inlet with the basic and modified bleed
configurations are presented in figures 37 and 38, respectively. For each bleed config-
uration, two operating conditions are shown. The first is near maximum angle of attack
and design Mach number, the second is at low angle of attack near minimum free-stream
Mach number (solid symbols shown in fig. 34).

The trend of the data obtained with the 60-40 inlet was similar to that obtained with
the 40-60 inlet. At large angles of attack near design Mach number (figs. 37(a) and
38(a)), the leeward side of the inlet showed evidence of local overcompression of the
flow. With the basic bleed configuration, the flow did not reach subsonic conditions
ahead of the throat at maximum angle of attack at design Mach number. This was the
only bleed configuration tested (for either inlet) where local subsonic flow did not occur
ahead of the throat at maximum angle of attack or at minimum attainable free-stream
Mach number conditions. This bleed configuration also had the least amount of tolerance
to decreases in free-stream Mach number. This configuration may be sensitive to de-
creasing Mach number due to the flow separation on the cowl (fig. 19(a)). With additional
forward cowl bleed (modified bleed) the maximum angle-of-attack tolerance at design
Mach number was increased from 4.5° (basic bleed configuration) to 7. 5°. The toler-
ance to decreases in free-stream Mach number for the modified bleed configuration was
comparable to the better 40-60 bleed configuration tested; that is, a decrease in Mach
number from design of about 0. 14 was attained.

SUMMARY OF RESULTS

An investigation of the tolerance of Mach 2.5 axisymmetric mixed-compression in-
lets to upstream flow variations has been conducted in the 10- by 10-Foot Supersonic
Wind Tunnel. The test was conducted at Mach numbers of 2. 34 to 2. 50 with the following
results:

1. Maximum inlet supercritical angle of attack is limited by inlet unstart, which is
caused by local overcompression on the leeward side of the inlet. This region of over -
compression caused subsonic flow ahead of the geometric throat in three of four bleed
configurations tested in two different inlets.

2. Higher angles of attack before unstart were obtained when porous bleed areas
were located farther upstream of the throat. This permitted the overcompression re-
gions to move farther upstream in the inlet. The overcompression to Mach 1.0 or below
could not be obtained upstream of a bleed region.

3. At maximum angle of attack at design Mach number the flow appeared well be-
haved on the windward side of the inlet.
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4. When operating at 0° angle of attack and at the minimum Mach number attainable
before unstart, overcompression similar to that obtained at maximum angle of attack
again appeared forward of the throat and circumferentially encompassed the entire inlet
flow field.

5. The maximum attainable tolerance to decreases in free-stream Mach number
was similar for both inlets. However, the inlet having the greater amount of external
area contraction exhibited greater tolerance to angle of attack.

6. A flow field distortion consisting of a 0. 10 Mach number gradient and a 2. 3°
angle-of -attack gradient had no significant affect on inlet performance.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, July 29, 1971,
764 -714.
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TABLE I. - LOCATION OF INTERNAL STATIC -PRESSURE

TAPS IN INLET MODELS, X/RC

40-60 Inlet 60-40 Inlet

Cowl Centerbody Cowl Centerbody
Top | Bottom Top | Bottom Top | Bottom Top | Bottom

(0°) | (180% | (0% | (180%) | (0% | (180%) | (0°) | (1809

2.82 | 2.82 2.36 | 2.36 2.68 | 2.68 2.60 | 2.60

3.13 | 2.87 2.82 | 2.79 2.81 | 2.81 2.67 | 2.67

3.24 | 3.12 2.93 | 2.81 2.89 | 2.89 2.72 | 2.72

3.30 | 3.14 3.04 | 2.83 2.93 ] 2.93 2.75 | 2.75

3.38 | 3.16 3.31 | 2.86 2.96 | 2.96 2.78 | 2.178

3.43 | 3.18 3.44 | 2.88 3.00| 3.00 2.80 | 2.80

3.49 | 3.20 3.54 | 2.90 3.04 | 3.04 2.83 | 2.83

3.53 | 3.21 3.66 | 2.92 3.07 | 3.07 2.86 | 2.86

3.57 | 3.23 3.76 | 2.94 3.10 | 3.10 2.89 | 2.89

3.61| 3.25 2.96 3.4 | 3.14 2.96 | 2.96

3.64 | 3.26 2.98 3.17 | 3.17 3.03 | 3.03

3.68 | 3.28 3.16 3.21] 3.21 3.10 | 3.10

3.72 | 38.30 3.18 3.24 | 3.24 3.14 | 3.14

3.75 | 3.32 3.20 3.28 | 3.28 3.17 | 3.17

3.86 | 3.36 3.22 3.31 { 3.31 3.21( 3.21

3.96 | 3.38 3.24 3.35 ] 3.35 3.25 | 3.25

4.12 | 3.40 3.26 3.38 | 3.38 3.29 | 3.29

3.43 3.32 3.43 | 3.43 3.32 ] 3.32

3.45 3.33 3.49 | 3.49 3.35 | 3.35

3.47 3.35 3.64 | 3.64 3.39 ] 3.39

3.49 3.37 3.68 | 3.68 3.44 | 3.44

3.51 3.39 3.78 | 3.78 3.49 | 3.49

3.53 3.40 3.95 | 3.95 3.54 | 3.54

3.67 3.42 3.59 [ 3.59

3.72 3.44 3.63 | 3.63

3.74 3.46 3.67 | 3.67

3.48 3.71¢{ 3.71

3.50 3.80 | 3.80

3.52 3.88 | 3.88

3.58 3.95 | 3.95
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Figure 13, - Installation of 40-60 inlet and flat plate in 10- by 10-Foot Supersonic Wind Tunnel.
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(a) Theoretical flow field; canceled shock with isentropic compression.
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Figure 21. - Comparison of theoretical and experimentally determined flow fields in 60 - 40 inlet at supercritical operating condition.
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Figure 25. - Static-pressure distributions of 40-60 inlet at various operating limits for downstream bleed configuration. Cowl-lip-position

parameter, 26.60°,
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inlet at Mach 2.50. Cowl-lip-position parameter, 26.60°,
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parameter, 26.60°.
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Figure 27. - Concluded.

36




— -—~ Upstream bieed; 0 = 3.9°
— — — Downstream bleed; a = 2.¢"
Upstream or downstream bleed; o = (°

}<————I Upstream bleed
-‘ I-—Downstream bleed

| ,~ Inlet geometric
“ throat

|
I
]
Y |
NN

Downstream bleed

N 4
AN u Upstream bleed

I I I | I | I I I I |
2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7
Distance from spike tip ratioed to cowl lip radius, X/R¢

Figure 28. - Shock structures corresponding to maximum angle of attack operation for
the upstream and downstream bleed configurations of 40-60 inlet. Cowl-lip-position
parameter, 26.60°.
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Figure 29. - Mach number - angle-of-attack characteristics of the 60-40 inlet with basic
and modified bleed configurations, Cowl-lip-position parameter, 25.25°.
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Figure 30. - Effect of flow field distortion on performance of 40-60 inlet with
upstream bleed configuration. Cowl-lip-position parameter, 26.60°.
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Figure 31. - Effect of flow field distortion on static-pressure distributions of 40-60 inlet with upstream bleed and (° angle of attack. Cowl-
lip-position parameter, 26.60°,
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Figure 32. - Effect of flow field distortion on
tolerance of 40-60 inlet to changes in angle
of attack and free-stream Mach number.
Cowl-lip-position parameter, 26, 6(°.




{a) M =2.50; a=0°.

(b) M =2.50; a=3.8".
Figure 33. - Schlieren photographs of 40-60 inlet.
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(c) M =2.34; a =0.10°.

(d) M =2.5;@=0°.

Figure 33. - Continued.
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(f) M =2.43; 0 =0.55°,

Figure 33. - Concluded.
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Figure 34. - Effect of fiow field distortion on Mach number - angle-of-attack tolerance
for 60-40 inlet. Cowl-lip-position parameter, 25,25°.
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Figure 35. - Performance of 60-40 inlet at various limits for basic bleed configuration.
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Figure 37. - Static-pressure distributions of 60-40 inlet at various operating limits for basic bleed configuration. Cowl-lip-position
parameter, 25,250,

(b-2) Bottom centerbody (180°).
(b) Centerbody surface; M = 2.498; @ = 4.5%,
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Figure 38. - Static-pressure distributions of 60-40 inlet at various operating limits for modified bleed configuration. Cowl-lip-

position parameter, 25.2%°.
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